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Basins of attraction on random topography
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We investigate the consequences of fluid flowing on a continuous surface upon the geometric and statistical
distribution of the flow. We find that the ability of a surface to collect water by its mere geometrical shape is
proportional to the curvature of the contour line divided by the local slope. Consequently, rivers tend to lie in
locations of high curvature and flat slopes. Gaussian surfaces are introduced as a model of random topography.
For Gaussian surfaces the relation between convergence and slope is obtained analytically. The convergence of
flow lines correlates positively with drainage area, so that lower slopes are associated with larger basins. As a
consequence, we explain the observed relation between the local slope of a landscape and the area of the
drainage basin geometrically. To some extent, the slope-area relation comes about not because of fluvial
erosion of the landscape, but because of the way rivers choose their path. Our results are supported by
numerically generated surfaces as well as by real landscapes.
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[. INTRODUCTION A useful family of artificial landscapes are Gaussian sur-
faces, which are formally introduced in the text. They form a
Aside from their natural beautjl], the morphological broad, yet relatively simple class of random surfaces. Their
features of landscapes also bear the signatures of tectonit@pography has rich implications for the statistical properties
and past and present climates. Hence it is important to uref flow on them. Gaussian surfaces may therefore serve as a
derstand their form and origif2]. The large number and “null hypothess” that represents basic geometric effects. To
variety of geological processes acting in the formation ofdetermine the traces of erosion in landscape topography, one
landscapes makes this a problem of formidable complexityn€€ds to find out what is special in the statistics beyond these
Numerous hypothetical models have been proposed to hefgEometrical effects. _
understand phenomena common to many river systems on [N Sec. Il we ask how the geometric form of a surface
Earth [3-5]. In this paper, we approach the problem by determines the drainage behavior, leading to a differential
studying fluid flow on continuous surfaces. This straightfor-€xpression for the topographic convergence of a surface.
ward approach leads to insights about the origin of observeg€ction lll deals with Gaussian surfaces, which serve as our
statistical features in real landscapes. model system. In the fourth section we demonstrate that a
Much attention has been devoted to the so-called slopeslope-area relation is present on Gaussian surfaces and its
area law, which presumably relates the erosion of a landéXplanation applies also to real landscapes. In Sec. V the
scape to the flow of water on[i8,6—14. The area, projected Slope-area relation is explored more quantitatively and its
onto the horizontal, that discharges its rain water into a surlimitations are pointed out. Conclusions are reiterated and
face element downbhill is referred to as the drainage arel ~ discussed in the last section.
the surface element. The observed correlation of local slopes

with drainage area has often been attributed to erosion Il. FLOW CONVERGENCE ON A SURFACE
mechanismg3]. A popular hypothesis is to balance down- _ _ _ _
ward sediment mass transport with tectonic upliétg., We consider a smooth surface described by its height

[10,11,19). Here we show that such a correlation is found onh(x,y) as a function of the horizontal coordinatesandy.

simple surfaces for purely geometric reasons. The main réater is assumed to follow the path of steepest descent,

sults of this paper are an exact relation, F@), between neglecting its inertia and volume.

slope and convergence for a wide class of random land- To begin, we define and calculate the convergence of flow

scapes, and a geometrical explanation of the slope-area rel@n the surface. Intuitively, a flow is convergent when neigh-

tion. The basic, intuitive reason for both results is that flatteboring flow lines approach each other as they continue

points on a surface have a stronger tendency to accumulag@wnhill. Consider the paths of two flow lines separated by

water from their neighborhood. Flow aggregates preferablan infinitesimally small distanceat heighth. A little further

on flatter regions. downhill, at a heighh— 8, they are separated by a distance
The primary distinction between our approach and that of"  rigyre 1 jllustrates the situation. The rate of lateral ap-

many previous investigations is that we look at the geometrl-proach is given by

cal effects of a surface rather than the active role of rivers.

Landscapes can be actively formed by continual erosion, but L

where do riverschooseto form on a prescribed landscape? [t]—[t]

What are their statistical properties in the absence of any p=—>"" @

physical mechanism altering the landscape? Studying flow

on prescribed surfaces allows an understanding of the pas-

sive role of rivers. meaning that the convergenpas the relative contraction of
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FIG. 1. Schematic drawing for the calculation of flow conver-

gence. The dotted curved lines are height contours.

the contour line segment per unit height. Dividing By

makes the definition independent of the spacing betweeﬁ

contours.

To obtainp, we first find the direction of the tangent to

the contour, described by= (x(t),y(t)). The parametet
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nominator of|Vh|3 [16] instead of|Vh|*, so that the con-
vergence may also be written as the curvature of the contour,
«, divided by the slopep=«/|Vh|.

The definition of convergencd) is merely based on the
geometry of the flow paths and does not involve velocities.
In fact, without further assumptions one has no knowledge of
velocities and fluxes on the surface.

Essentially the same notion of convergence as in(Eg.
has been proposed earligk7] and employed in studies of
landscapeg17,18. In Ref. [17] landscapes were decom-
posed into elements by tracing their height contours. The
contour segments generated were then used to evaluate
(|t]=|t")/(|t]+]|t’]) for a givens. For an infinitesimally
fine grid this agrees, up to a prefactor, with E(9.and(6).
Others(see Refs[3,19)) have proposed the Laplaciafth
s a local definition of convergence, which can differ from
g.(6) even in its sign. The use of the Laplacian applies for
a particular model of fluxes and erosion, but it is not a gen-
eral expression for topographic convergence. For example,
the hyperbolic surfacé(x,y)=2x?>—y? would be errone-

can be chosen to represent the length of the contour elemerjusly identified as convergent everywhere. The proper dis-

We denoteh(t)=h(x(t),y(t)). A first-order expansion

h(x,y)=h(0,0) + d,h(0,0)x+ dyh(0,0)y + O(x*+y?)
2

yields the equation for the tangeﬁbf the contour at point

(0,0). Sinceh(t)=const andt|=t, one obtains to first order

ayh

|Vh|

d,h

x=t -,
[Vh

)

and y=—t

tinction between topographic convergence and divergence is
given by the sign of Eq(6).

It is worthwhile to pause here to contemplate the intuitive
reasons for convergence. If the contours are strongly curved
the surface acts like a funnel and water converges rapidly.
The slope influences the convergence via the curvature, but it
also alters the available path length per unit height. The latter

effect is reflected in the denominatorf /| Vh|. Figure 2
demonstrates this slope effect in a simple example. In this
example, bothx and |Vh| change to increase the conver-
gence. On steep slopes water falls quickly along paths with

Derivatives without their argument are here always undertittle relative motion, while on flatter slopes paths are de-

stood to be taken at the origin, that is, we wrdtgh instead

of 9,h(0,0), and so on. The first-order expansion of the gra-

dient along the contour becomes

N . dychdyh— dyyhayh
Vh(t)=Vh(0)+ — ( Ty T )+O(t2).
IVh(0)| dyyhdyh—ayyha,h
4
According to Fig. 1,
L 5  Vh(t) 5  Vh(0)
t'=t+

[Vh(t)] [Vh(t)| |Vh(0)| |[Vh(0)]

t+ [Vh(t)—Vh(0)]+O(t5). (5

|Vh(0)|?

A straightforward calculation using Eq$l), (4), and (5)
then yields

(9yh)?dyh—2(dxh)(dyh) dyyh+ (9¢h)2ayh

i [+ (3,1 P - ©

The surface is convergent when the expresgiiis positive

flected more easily.

The notion of convergence intrinsically requires that the
elevation is a function of two spatial coordinates. It has no
equivalent in a one-dimensional setting, where the height is
considered as a function of one coordinate only. Hence, any
consequences derived from the convergence expression are
three dimensional in natur@eight and two horizontal coor-
dinates.

In our idealized setting rivers may be associated with lo-
cations carrying much more running water than neighboring
points at the same height. They can do this by accumulating
water from uphill more effectively. If a point converges flow
faster than a neighboring point at the same height, fluid
moves toward the point of higher convergence. Conse-
quently, locations of strongest convergence tend to act as
rivers. It is thus clear that rivers tend to form in locations of
largep, where the slope is low and the curvature high. Rivers
are thus associated with a local optimality property, resulting
from the mere fact that they flow on surfaces. This optimality
property is not directly equivalent to “optimal channel net-
works” [4] or any of the other proposed optimality prin-
ciples[20] for river networks.

Ill. GAUSSIAN SURFACES

and divergent when it is negative. The expression for the Gaussian surfaces are random continuous surfaces de-

curvature of the contour differs from E¢6) only by a de-

scribed by a superposition of waves with random phases
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vanishes, becaugechanges sign as— —h. Thus we look
at the square of the convergence:

(ﬁh>2>

g -
+<(ayyh)2)<—( )8 (Vh)2>

- a.h)4
<|oz|<Vh>2>=<<axxh>2><(*y )
(Vh)8

(Vh)

(3yh)?(dyh)?
Vh)8

+4<(&xyh)2><

(ﬁh>2>

2 2
(KIS ISR
Vh)®

+ 2(((9xxh)z9yyh><

L o e — Here, we have made use of the statistical independence of
1-050 05 1 1-050 05 1 first and second derivatives. The mixed termspéfvanish

(a) X (b) X because of the statistical symmetries- —x andy— —v.

The conditional averages now reduce to geometrical factors,

FIG. 2. lllustration of the effect of slope on the convergence ofwhich can be rewritten for a statistically isotropic situation in
flow lines. A simple surface of the fortm(x,y)=x+byis used as terms of an angleé):tan_l(&yhlaxh):
an easily visualized example. The solid lines in the upper panels of
the figure show the flow lines fds= (a) 1 and(b) 3. The dotted .
lines are height contours. The contour interval is the same in botp?|(Vh)?)={((dy,h)?)(sin* 9) —
parts of the figure. One sees the stronger convergence in the flatter ( h)4
of the two surfaces(a), as well as the stronger convergence in the
flatter regions toward the center of thkeaxis within each figure.

2
The behavior of the convergenpéx) and the slopes(x) [actually +<(‘7yyh) ><CO§ 0) Th)
s(x)/2] is illustrated in the lower panels. (Vh)
[21-24. Results on Gaussian surfaces have been applied in +4<(8xyh)2>(5in2 6 cog 6) -
various fields, including electric noisg25], water waves (Vh)*
[22,23, beacheg26], image processin{27], and the clus-
tering of galaxie$28]. We will here need only some of their ) 1
elementary properties. +2((9xh) dyyh)(sir? 6 cos ) " (8
A Gaussian surface is defined as (Vh)
_ 3 o 1 o 1
h(x,y)=2 C(k,l)eil[kXHyﬂD(k’l)], (7) = g(([?xxh) >+ 5<((9xyh) >+ Z((axxh)(}yyrw
k|

where ¢ is a random variable uniformly distributed between n §<(& h)2) 9)
0 and 2r. The amplitudeg(k,|) are arbitrary, but, of course, gV (Vh)*
they need to decay sufficiently fast with wave number to
guarantee the continuity and differentiability of the surface. 2 1/(Vh), (10)

Any Gaussian surface has the property that its heights and all
of its derivatives are distributed Gaussian. Furthermore, th?herefore, the convergence behaves as the inverse of the
first derivative is statistically independent of the height, a”dslope squared,
the second derivatives are independent of the first derivatives
(2 [pl~1/(Vh)? (11

This last property allows us to evaluate the convergence
for a given slope quantitatively. Qualitatively, it is already

) . . or, vice versa|Vh|~ 1/{[p|. Since the slope enters quadrati-
clear from our early discussion of expressi@ that flatter vhi Pl P a

. X cally in Eq. (11), it has astrong effect on the convergence.
areas tend to converge flow more rapidly. For Gaussian SUhis is the relation between convergence and slope for a

faces this relation cah be madt_a precise. Th.e CONVETIBNCE G ayssian surface, irrespective of the surface’s spatial corre-
averaged over all points of a given slopeh| is called the |ations. In fact, for the resul®) to be valid, the surface does
conditional average of the convergence on the slopenot necessarily need to be Gaussian. Instead, one requires
(p||Vh|). The simple conditional averagép|(Vh)?)=0  only that the first and second derivatives of height be statis-
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M VL B B The structure functiof|h(x) —h(x+ R)|?) is proportional to
108 | N 2 ; :
. R<P for 0<p<1. If p is small, one has to introduce a cutoff
10 + ’\\ - scale to maintain the differentiability of the surface, and
o | o, % therefore we takdc(k)|=1/Kk|**) for 2m/\<k<2m/A
o 10 o andc(k) =0 otherwise. Graphs with solid dots, in Fig. 3 and
‘e 10° + elsewhere, correspond to a Hurst exponenpof0.7.
ot 2 In concluding this section, we note that convergence is
o 10° intuitively related to the drainage area. Points of stronger
104 F convergence will, on average, possess larger drainage areas,
because they collect more flow than points of low conver-
10° | gence. Ifp increases so does leading to a slope-area rela-
» tion.
1 -8 RN BRI TTI SSUPUTTIT RN
0.001  0.01 0.1 1 10 IV. SLOPE-AREA RELATION
Slope

Erosion rates increase with the amount of flowing water
and are also affected by the local slope of the landscape,
mong other factor$2]. If other parameters, like width,

FIG. 3. Convergence-slope relation for synthefiiied dotg
and real landscapdsinfilled symbol$. The dashed line shows the
analytical result for the synthetic landscape. All data are average . . . .
over logarithmically spaced bins on the abscissa. The unfilled sym: epth, _and velocity of a river are c_onS|dered a funct|or_1 of
bols correspond to three different landscapes in Northern CalifornizgOtal discharge and slope, one arrives at the conventional

as described in the textThe units for the synthetic landscape are 25SUmption that erosion is a function of slope and drainage
arbitrary and hence only the slope of the graph can be compared /€@ 0N 3]. Local topography can carry the signature of the
real data. The two lowest graphs are shifted downwards by factor§ntire basin draining into {t30]. o
of 40 and 1600, respectively, for better visibility. On real landscapes a statistical relation is observed be-
tween the local slope and the drainage arelés quantitative
tically independent of each other. For Gaussian surfaces thfgrm is roughlylﬁh|~1A/§ [3,10,31. There are, however,
prefactor in Eq(9) can be further simplified, but this is im- substantial variations of the exponent of 0.5 for different
material for the present study. river systemg8]. We have analyzed real landscapes from
We can check this result on both synthetic and real landdigital elevation maps of coastal landscapes from the Men-
scapes. A Gaussian surface can be efficiently created usirfbcino region in northern Californigg2,33. A detailed de-
Fourier transform$29]. Interpolation could be used to obtain scription of the Juan Creek data is given in §82] and the
heights and gradients at any position between grid points\Noyo river basin is discussed in R¢83]. These data have
Real landscapes from digital elevation maps, which we us@0 m resolution in both horizontal directions. Figuréa)4
below, are, however, conventionally evaluated on a discretehows the slope-area relation of a Gaussian surface together
grid. We opt to evaluate synthetic surfaces and real landwith that of three real landscapes. One sees that the random
scapes in the same discrete way. Fluid paths are determing@rface exhibits a slope-area relation similar to the one seen
by following the direction of steepest descent among then the real datd34].
eight neighbors. Fluid trajectories are stopped when they For Fig. 4a) the slope was calculated as the maximum
reach a local minimum, implying a lake or ocean at thatdrop from pixel to pixel. Another method, used in all other
place. We choose the smallest wavelengtias four grid  figures, is to take a finite difference in both horizontal direc-
cells long, which is twice the smallest representable wavetions and to evaluate the absolute value of the gradient in this
length. The largest wavelength equals the domain size.  way. Using a stencil of five points in both direction, this is
Figure 3 shows the convergence-slope relation measuragio orders more accurate than the previous method, but not
in the simulated surfaces, which must agree with fornt@la  necessarily more realistic, because the gradient is in this case
The filled dots are the measurements from a simulated sufot exactly aligned with the direction of the flow. Figuré)
face and the dashed line is the theoretical calculation usingepeats Fig. @), with the alternative slope measurement.
the prefactor in Eq(9). The deviations between theory and The observed slope-area relationships are weaker in this
numerics are tiny, although the average was taken over onlyase, but still roughly equivalent for real and Gaussian sur-
one realization and the domain is periodic in both directionsfaces. The discrepancy with Fig(a} arises merely from the
In the same figure are data from real landscapes, discuss@ghbiguity of measuring the slopes from the dgd8].
later in the text. Note now, however, the good fit over two  Real landscapes are more complex than Gaussian sur-
orders of magnitude in slope; almost the entire range. faces. Erosion might alter landscapes in a way not captured
The result(9) shown in Fig. 3 is independent of the choice by Gaussian surfaces. Yet the direct comparisons of the
for the power spectrum. Yet, for completeness, we note thadlope-area relation in Fig. 4 shows a similarity between
the spectrum used in this example is a power-law spectrumhem. The extent to which the geometric explanation of the
where the coefficients in Eq7) are |c(k)|=1/k|**#) and  slope-area relation applies to real landscapes can be further
the phases are random. The exponeistknown as the Hurst probed by looking at the convergence-slope and
exponent. It has a simple relation with the “roughness expo<onvergence-area relation of the real landscapes. Figure 3
nent” that characterizes the spatial correlation of the heightshows that the convergence-slope relation of Gaussian sur-
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(b) a(m?) FIG. 5. Convergence-area relation for synthéfiked symbols

. . and real landscapésmpty symbols The two plots show the same
FIG. 4. Slope-area relation for synthetic and real Iandscapeqjata<p|a> on (a) a semilogarithmic andb) a log-log plot. The

The solid line with filled dots in parte) and(b) is for a simulated  |g\o4h ynits for the simulated landscape are chosen arbitrarily. The
Gaussian surface at a resolution of 483896. The length units  4-ched line in(b) corresponds t@xa.

for the simulated landscape are chosen arbitrarily. The unfilled sym-

bols correspond to Juan Creé ), middle fork of the Noyo River . ) .
(), and north fork of the Noyo Rivel). These symbols are used With several different Hurst exponenfs one exponential

uniformly in all figures.(The graphs for the last two landscapes arePOWer spectrum, and a landscape that is half filled with water
shifted downward by factors of 1.4 and 3, respectively, for betterignoring the lower half when taking the statisticor the
visibility.) The two parts of the figure differ only in the way the Surfaces with short spatial correlation there is a clear area
slope is determined. In both parts real and artificial landscapes exependence of the slope, while the surfaces that change more
hibit similar slope-area graphs, suggesting the relation has a simplowly exhibit less of a dependence. For landscapes that are
geometric origin. statistically self-similar, and hence characterized by their
Hurst exponenp, the slope-area relationship becomes more
faces is reasonably true also for real landscapes. All of therand more pronounced asgoes from 1 to zero.
show a behavior close tp?~1/Vh|*. Figure 5 shows the Real landscapes are said to have Hurst exponents of about

convergence-area relation for real landscapes together wifh? [36], although there are considerable variations among
that for a synthetic landscape. Particularly small drainage
areas are found for divergent points. The minimum drainage
is the size of one cell, which is 9002mAfter a rapid initial

growth of the average convergence for smaller areas, the ) .. exp.

graph approaches its asymptotic behavior. Again, we see that ST p=0.4

real landscapes behave in this respect similarly to Gaussian F/ ~~. p=0.7 w/ ocean?
surfaces. Hence, there is no doubt that the geometric effect & F p=0.7 ]
found for Gaussian landscapes is also present in real land- @ L/ T p=l

scapes. 1072

JJ

V. VARIATIONS IN THE SLOPE-AREA RELATION 1

ON GAUSSIAN SURFACES 10° bbbl il

10 10" 10° 10° 10" 10" 10
a

The slope-area relation depends on the statistical param-
eters of the surface, unlike E@9). Therefore, we obtain
pertinent StatistiCS from I’lumerical Simulations. In the fO”OW- FIG. 6. S|0pe_area relation for Gaussian |andscapesl The differ-
ing, we discuss how the relation changes with the choice oént graphs correspond to landscapes with power-law spectra with
the power spectrum. We explore various surfaces that varyifferent Hurst exponents, an exponential power spectrum, and a
over a wide range of length scales. landscape half filled with an “ocean.” They are obtained at a reso-

Figure 6 shows the slope-area relation for power lawdution of 1024x 1024. The length units are chosen arbitrarily.
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individual landscapegsee[37] and references ifi38]). We  This connection is intuitive, but we also demonstrated it nu-
determined the structure functions of the real landscapemerically. Further, we have left little doubt that the same
used in this study. They exhibit only a rather limited range ofeffect appears in real landscapes too, by verifying the valid-
scaling, if at all, but they tend to be substantially flatter thanity of both steps with real data.
0.7. This corresponds to a lower Hurst exponent and thus a We have also found that the slope-area correlation cannot
faster decorrelation. However, given the average tilting ofbe strengthened indefinitely by varying the parameters. The
the coastal basins and their small Size, this mlght not b%]ope_area relation is often approximated |§‘:h|~a7(’_
significant. In any case, in the range of Hurst exponents Gsince we find for random surfacess®<0.3, an exponent in
<p<1 the simulated Gaussian surfaces show a clear slopghjs range implies nothing about geological processes. It is
area dependence, as seen in Fig. 6. The graphp#@.4  instead only a consequence of water flowing downhill on
and 0.7 have a slope in the range of 0.15-0.25. Varying thegandom landscapes. This is in direct contrast to hypotheses
power spectrum can lead to flatter or steeper slopes, but W@at attribute any slope-area relation to erosional mechanisms
have never observed a slope-area graph steeper than abgsée references iig]).
0.3. If erosional mechanisms were responsible for slope-area
Figure 8b) shows that for large convergengegrows relations one would expect a deterministic relation between
more slowly than the areafor the real and simulated land- sjope and area. A certain drainage area would always lead to
scapes. The same is true for simulated landscapes with oth@ife same slope at its outlet. Fluctuations would then be due
parametergnot shown in Fig. band we have not found any to variations in geological parameters. On Gaussian surfaces,
Gaussian landscape that would violate this trend. Since on the other hand, there are intrinsic statistical fluctuations
<0O(a) and p~1/Vh|?, it follows that [Vh|=0(1/Ja).  and the slope-area relation is a statistical correlation rather
Hence, one expects that the slope decays no faster tian 1/ than a deterministic formula. Investigations of qualitative
As mentioned above, the actual restriction appears to be evelifferences between slope-area fluctuations on real and ran-
stronger, arounda” %3 This indicates the presence of a dom landscapes are therefore expected to yield additional
bound for the area dependence of the slope on a Gaussiésight.
landscape. The convergence depends strongly on the slope Although this study is motivated by geomorphology the
and the area depends strongly on the convergence, and thef@me statistical findings are applicable to other physical sys-
fore the area strongly on the slope, or, equivalently, the slopt&ems, where the motion is strictly along the gradient of the
weakly on the area. Hence, it is difficult to get a particularlyforce field and the inertia negligible. The slope-area relation
strong slope-area relation through geometrical effects alondn this context states that for a quickly decorrelating force
In the particular case of Fig. 4 the graphs for the realfield the domain of attraction will, on average, be larger
landscapes change their slope at abofti®d This corre-  when the force is smallefReference 24] reviews applica-
sponds geologically to a transition from colluvigose de- tions of Gaussian surfaces when the motion is along equipo-
bris) channels to bedrock channdld2]. The fact that the tential lines, rather than perpendicular to them.
simulations nowhere exhibit the final drop in the slope-area The slope-are relation is but one consequence of the con-
relation to its full extent seen in real landscap€sy. 4, vergence expressiof®). Another consequence, as we have
indicates that there are contributions to the slope-area reld¥iefly discussed, is the formation of rivers preferably on
tion beyond the geometrical effect we have unearthed in thications of high convergence. The local optimum is with
paper. Exceptional cases of real landscapes are known witl@spect to points on the same contour line, thap is, maxi-
slope-area relations that are substantially more pronounceium alongh=const, or in terms of our earlier notation
than the ones we encounter on Gaussian surfi@@89.  dp/dt=0 andd?p/dt><0. This indicates a previously over-
This leaves room for erosion, tectonics, or further mechalooked optimality principle for the organization of rivers.
nisms contributing to the slope-area relation. However, sincéNote that this extremal principle is not strictly valid for
a substantial slope-area relation is produced by Gaussian suroints at different heights. If it were, it would immediately
faces with realistic Hurst exponents, the slope-area relatioimply that the longitudinal stream profiles are congave
carries less information about these processes than prewVhether such an observation may by of any use is unclear.

ously thought. What is clear, however, is that Gaussian or otherwise random
topography has far-reaching nontrivial implications on basin
VI. DISCUSSION statistics.
In this work, we found and explained a correlation be- ACKNOWLEDGMENTS

tween slope and drainage-basin area on random topography.
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