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Basins of attraction on random topography
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~Received 20 September 2000; published 24 January 2001!

We investigate the consequences of fluid flowing on a continuous surface upon the geometric and statistical
distribution of the flow. We find that the ability of a surface to collect water by its mere geometrical shape is
proportional to the curvature of the contour line divided by the local slope. Consequently, rivers tend to lie in
locations of high curvature and flat slopes. Gaussian surfaces are introduced as a model of random topography.
For Gaussian surfaces the relation between convergence and slope is obtained analytically. The convergence of
flow lines correlates positively with drainage area, so that lower slopes are associated with larger basins. As a
consequence, we explain the observed relation between the local slope of a landscape and the area of the
drainage basin geometrically. To some extent, the slope-area relation comes about not because of fluvial
erosion of the landscape, but because of the way rivers choose their path. Our results are supported by
numerically generated surfaces as well as by real landscapes.
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I. INTRODUCTION

Aside from their natural beauty@1#, the morphological
features of landscapes also bear the signatures of tecto
and past and present climates. Hence it is important to
derstand their form and origin@2#. The large number and
variety of geological processes acting in the formation
landscapes makes this a problem of formidable complex
Numerous hypothetical models have been proposed to
understand phenomena common to many river system
Earth @3–5#. In this paper, we approach the problem
studying fluid flow on continuous surfaces. This straightf
ward approach leads to insights about the origin of obser
statistical features in real landscapes.

Much attention has been devoted to the so-called slo
area law, which presumably relates the erosion of a la
scape to the flow of water on it@3,6–14#. The area, projected
onto the horizontal, that discharges its rain water into a s
face element downhill is referred to as the drainage areaa of
the surface element. The observed correlation of local slo
with drainage area has often been attributed to eros
mechanisms@3#. A popular hypothesis is to balance dow
ward sediment mass transport with tectonic uplift~e.g.,
@10,11,15#!. Here we show that such a correlation is found
simple surfaces for purely geometric reasons. The main
sults of this paper are an exact relation, Eq.~9!, between
slope and convergence for a wide class of random la
scapes, and a geometrical explanation of the slope-area
tion. The basic, intuitive reason for both results is that fla
points on a surface have a stronger tendency to accum
water from their neighborhood. Flow aggregates prefera
on flatter regions.

The primary distinction between our approach and tha
many previous investigations is that we look at the geome
cal effects of a surface rather than the active role of rive
Landscapes can be actively formed by continual erosion,
where do riverschooseto form on a prescribed landscape
What are their statistical properties in the absence of
physical mechanism altering the landscape? Studying fl
on prescribed surfaces allows an understanding of the
sive role of rivers.
1063-651X/2001/63~2!/026112~7!/$15.00 63 0261
ics
n-

f
y.
lp

on

-
d

e-
d-

r-

es
n

e-

d-
la-
r
te

ly

f
i-
s.
ut

y
w
s-

A useful family of artificial landscapes are Gaussian s
faces, which are formally introduced in the text. They form
broad, yet relatively simple class of random surfaces. Th
topography has rich implications for the statistical propert
of flow on them. Gaussian surfaces may therefore serve
‘‘null hypothesis’’ that represents basic geometric effects.
determine the traces of erosion in landscape topography,
needs to find out what is special in the statistics beyond th
geometrical effects.

In Sec. II we ask how the geometric form of a surfa
determines the drainage behavior, leading to a differen
expression for the topographic convergence of a surfa
Section III deals with Gaussian surfaces, which serve as
model system. In the fourth section we demonstrate tha
slope-area relation is present on Gaussian surfaces an
explanation applies also to real landscapes. In Sec. V
slope-area relation is explored more quantitatively and
limitations are pointed out. Conclusions are reiterated a
discussed in the last section.

II. FLOW CONVERGENCE ON A SURFACE

We consider a smooth surface described by its he
h(x,y) as a function of the horizontal coordinatesx and y.
Water is assumed to follow the path of steepest desc
neglecting its inertia and volume.

To begin, we define and calculate the convergence of fl
on the surface. Intuitively, a flow is convergent when neig
boring flow lines approach each other as they contin
downhill. Consider the paths of two flow lines separated
an infinitesimally small distancetW at heighth. A little further
downhill, at a heighth2d, they are separated by a distan
tW8. Figure 1 illustrates the situation. The rate of lateral a
proach is given by

p5
u tWu2u tW8u

u tWud
, ~1!

meaning that the convergencep is the relative contraction o
©2001 The American Physical Society12-1
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NORBERT SCHORGHOFER AND DANIEL H. ROTHMAN PHYSICAL REVIEW E63 026112
the contour line segment per unit height. Dividing byd
makes the definition independent of the spacing betw
contours.

To obtainp, we first find the direction of the tangent t
the contour, described bytW5„x(t),y(t)…. The parametert
can be chosen to represent the length of the contour elem
We denoteh(t)[h„x(t),y(t)…. A first-order expansion

h~x,y!5h~0,0!1]xh~0,0!x1]yh~0,0!y1O~x21y2!
~2!

yields the equation for the tangenttW of the contour at point
~0,0!. Sinceh(t)5const andu tWu5t, one obtains to first orde

x5t
]yh

u¹W hu
and y52t

]xh

u¹W hu
. ~3!

Derivatives without their argument are here always und
stood to be taken at the origin, that is, we write]xh instead
of ]xh(0,0), and so on. The first-order expansion of the g
dient along the contour becomes

¹W h~ t !5¹W h~0!1
t

u¹W h~0!u
S ]xxh]yh2]xyh]xh

]xyh]yh2]yyh]xh
D 1O~ t2!.

~4!

According to Fig. 1,

tW85 tW1
d

u¹W h~ t !u

¹W h~ t !

u¹W h~ t !u
2

d

u¹W h~0!u

¹W h~0!

u¹W h~0!u

5 tW1
d

u¹W h~0!u2
@¹W h~ t !2¹W h~0!#1O~ td!. ~5!

A straightforward calculation using Eqs.~1!, ~4!, and ~5!
then yields

p5
~]yh!2]xxh22~]xh!~]yh!]xyh1~]xh!2]yyh

@~]xh!21~]yh!2#2 . ~6!

The surface is convergent when the expression~6! is positive
and divergent when it is negative. The expression for
curvature of the contour differs from Eq.~6! only by a de-

FIG. 1. Schematic drawing for the calculation of flow conve
gence. The dotted curved lines are height contours.
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nominator ofu¹W hu3 @16# instead ofu¹hu4, so that the con-
vergence may also be written as the curvature of the cont
k, divided by the slope,p5k/u¹W hu.

The definition of convergence~1! is merely based on the
geometry of the flow paths and does not involve velociti
In fact, without further assumptions one has no knowledge
velocities and fluxes on the surface.

Essentially the same notion of convergence as in Eq.~1!
has been proposed earlier@17# and employed in studies o
landscapes@17,18#. In Ref. @17# landscapes were decom
posed into elements by tracing their height contours. T
contour segments generated were then used to eva
(u tWu2u tW8u)/(u tWu1u tW8u) for a given d. For an infinitesimally
fine grid this agrees, up to a prefactor, with Eqs.~1! and~6!.
Others~see Refs.@3,19#! have proposed the Laplacian¹2h
as a local definition of convergence, which can differ fro
Eq. ~6! even in its sign. The use of the Laplacian applies
a particular model of fluxes and erosion, but it is not a ge
eral expression for topographic convergence. For exam
the hyperbolic surfaceh(x,y)52x22y2 would be errone-
ously identified as convergent everywhere. The proper
tinction between topographic convergence and divergenc
given by the sign of Eq.~6!.

It is worthwhile to pause here to contemplate the intuiti
reasons for convergence. If the contours are strongly cur
the surface acts like a funnel and water converges rapi
The slope influences the convergence via the curvature, b
also alters the available path length per unit height. The la
effect is reflected in the denominator ofp5k/u¹W hu. Figure 2
demonstrates this slope effect in a simple example. In
example, bothk and u¹W hu change to increase the conve
gence. On steep slopes water falls quickly along paths w
little relative motion, while on flatter slopes paths are d
flected more easily.

The notion of convergence intrinsically requires that t
elevation is a function of two spatial coordinates. It has
equivalent in a one-dimensional setting, where the heigh
considered as a function of one coordinate only. Hence,
consequences derived from the convergence expression
three dimensional in nature~height and two horizontal coor
dinates!.

In our idealized setting rivers may be associated with
cations carrying much more running water than neighbor
points at the same height. They can do this by accumula
water from uphill more effectively. If a point converges flo
faster than a neighboring point at the same height, fl
moves toward the point of higher convergence. Con
quently, locations of strongest convergence tend to ac
rivers. It is thus clear that rivers tend to form in locations
largep, where the slope is low and the curvature high. Riv
are thus associated with a local optimality property, result
from the mere fact that they flow on surfaces. This optima
property is not directly equivalent to ‘‘optimal channel ne
works’’ @4# or any of the other proposed optimality prin
ciples @20# for river networks.

III. GAUSSIAN SURFACES

Gaussian surfaces are random continuous surfaces
scribed by a superposition of waves with random pha
2-2
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BASINS OF ATTRACTION ON RANDOM TOPOGRAPHY PHYSICAL REVIEW E63 026112
@21–24#. Results on Gaussian surfaces have been applie
various fields, including electric noise@25#, water waves
@22,23#, beaches@26#, image processing@27#, and the clus-
tering of galaxies@28#. We will here need only some of the
elementary properties.

A Gaussian surface is defined as

h~x,y!5(
k,l

c~k,l !e2 i @kx1 ly1w~k,l !#, ~7!

wherew is a random variable uniformly distributed betwe
0 and 2p. The amplitudesc(k,l ) are arbitrary, but, of course
they need to decay sufficiently fast with wave number
guarantee the continuity and differentiability of the surfa
Any Gaussian surface has the property that its heights an
of its derivatives are distributed Gaussian. Furthermore,
first derivative is statistically independent of the height, a
the second derivatives are independent of the first derivat
@21#.

This last property allows us to evaluate the converge
for a given slope quantitatively. Qualitatively, it is alread
clear from our early discussion of expression~6! that flatter
areas tend to converge flow more rapidly. For Gaussian
faces this relation can be made precise. The convergenp

averaged over all points of a given slopeu¹W hu is called the
conditional average of the convergence on the slo

^puu¹W hu&. The simple conditional averagêpu(¹W h)2&50

FIG. 2. Illustration of the effect of slope on the convergence
flow lines. A simple surface of the formh(x,y)5x21by is used as
an easily visualized example. The solid lines in the upper pane
the figure show the flow lines forb5 (a) 1 and~b! 3. The dotted
lines are height contours. The contour interval is the same in b
parts of the figure. One sees the stronger convergence in the fl
of the two surfaces,~a!, as well as the stronger convergence in t
flatter regions toward the center of thex axis within each figure.
The behavior of the convergencep(x) and the slopes(x) @actually
s(x)/2# is illustrated in the lower panels.
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vanishes, becausep changes sign ash→2h. Thus we look
at the square of the convergence:

^p2u~¹W h!2&5^~]xxh!2&K ~]yh!4

~¹W h!8U~¹W h!2L
1^~]yyh!2&K ~]xh!4

~¹W h!8U~¹W h!2L
14^~]xyh!2&K ~]xh!2~]yh!2

~¹W h!8 U~¹W h!2L
12^~]xxh!]yyh&K ~]xh!2~]yh!2

~¹W h!8 U~¹W h!2L .

Here, we have made use of the statistical independenc
first and second derivatives. The mixed terms ofp2 vanish
because of the statistical symmetriesx→2x and y→2y.
The conditional averages now reduce to geometrical fact
which can be rewritten for a statistically isotropic situation
terms of an angleu5tan21(]yh/]xh):

^p2u~¹W h!2&5^~]xxh!2&^sin4 u&
1

~¹W h!4

1^~]yyh!2&^cos4 u&
1

~¹W h!4

14^~]xyh!2&^sin2 u cos2 u&
1

~¹W h!4

12^~]xxh!]yyh&^sin2 u cos2 u&
1

~¹W h!4
~8!

5F3

8
^~]xxh!2&1

1

2
^~]xyh!2&1

1

4
^~]xxh!]yyh&

1
3

8
^~]yyh!2&G 1

~¹W h!4
~9!

}1/~¹W h!4. ~10!

Therefore, the convergence behaves as the inverse o
slope squared,

upu;1/~¹W h!2 ~11!

or, vice versa,u¹W hu;1/Aupu. Since the slope enters quadra
cally in Eq. ~11!, it has astrongeffect on the convergence
This is the relation between convergence and slope fo
Gaussian surface, irrespective of the surface’s spatial co
lations. In fact, for the result~9! to be valid, the surface doe
not necessarily need to be Gaussian. Instead, one req
only that the first and second derivatives of height be sta

f
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tter
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NORBERT SCHORGHOFER AND DANIEL H. ROTHMAN PHYSICAL REVIEW E63 026112
tically independent of each other. For Gaussian surfaces
prefactor in Eq.~9! can be further simplified, but this is im
material for the present study.

We can check this result on both synthetic and real la
scapes. A Gaussian surface can be efficiently created u
Fourier transforms@29#. Interpolation could be used to obta
heights and gradients at any position between grid poi
Real landscapes from digital elevation maps, which we
below, are, however, conventionally evaluated on a disc
grid. We opt to evaluate synthetic surfaces and real la
scapes in the same discrete way. Fluid paths are determ
by following the direction of steepest descent among
eight neighbors. Fluid trajectories are stopped when t
reach a local minimum, implying a lake or ocean at th
place. We choose the smallest wavelengthl as four grid
cells long, which is twice the smallest representable wa
length. The largest wavelengthL equals the domain size.

Figure 3 shows the convergence-slope relation meas
in the simulated surfaces, which must agree with formula~9!.
The filled dots are the measurements from a simulated
face and the dashed line is the theoretical calculation u
the prefactor in Eq.~9!. The deviations between theory an
numerics are tiny, although the average was taken over
one realization and the domain is periodic in both directio
In the same figure are data from real landscapes, discu
later in the text. Note now, however, the good fit over tw
orders of magnitude in slope; almost the entire range.

The result~9! shown in Fig. 3 is independent of the choic
for the power spectrum. Yet, for completeness, we note
the spectrum used in this example is a power-law spectr
where the coefficients in Eq.~7! are uc(kW )u}1/ukW u(11r) and
the phases are random. The exponentr is known as the Hurs
exponent. It has a simple relation with the ‘‘roughness ex
nent’’ that characterizes the spatial correlation of the heig

FIG. 3. Convergence-slope relation for synthetic~filled dots!
and real landscapes~unfilled symbols!. The dashed line shows th
analytical result for the synthetic landscape. All data are avera
over logarithmically spaced bins on the abscissa. The unfilled s
bols correspond to three different landscapes in Northern Califo
as described in the text.~The units for the synthetic landscape a
arbitrary and hence only the slope of the graph can be compare
real data. The two lowest graphs are shifted downwards by fac
of 40 and 1600, respectively, for better visibility.!
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The structure function̂uh(x)2h(x1R)u2& is proportional to
R2r for 0,r,1. If r is small, one has to introduce a cuto
scale to maintain the differentiability of the surface, a
therefore we takeuc(kW )u51/ukW u(11r) for 2p/l,k,2p/L
andc(kW )50 otherwise. Graphs with solid dots, in Fig. 3 an
elsewhere, correspond to a Hurst exponent ofr50.7.

In concluding this section, we note that convergence
intuitively related to the drainage area. Points of stron
convergence will, on average, possess larger drainage a
because they collect more flow than points of low conv
gence. Ifp increases so doesa, leading to a slope-area rela
tion.

IV. SLOPE-AREA RELATION

Erosion rates increase with the amount of flowing wa
and are also affected by the local slope of the landsca
among other factors@2#. If other parameters, like width
depth, and velocity of a river are considered a function
total discharge and slope, one arrives at the conventio
assumption that erosion is a function of slope and drain
area only@3#. Local topography can carry the signature of t
entire basin draining into it@30#.

On real landscapes a statistical relation is observed
tween the local slope and the drainage areaa. Its quantitative
form is roughly u¹W hu;1/Aa @3,10,31#. There are, however
substantial variations of the exponent of 0.5 for differe
river systems@8#. We have analyzed real landscapes fro
digital elevation maps of coastal landscapes from the M
docino region in northern California@32,33#. A detailed de-
scription of the Juan Creek data is given in Ref.@32# and the
Noyo river basin is discussed in Ref.@33#. These data have
30 m resolution in both horizontal directions. Figure 4~a!
shows the slope-area relation of a Gaussian surface toge
with that of three real landscapes. One sees that the ran
surface exhibits a slope-area relation similar to the one s
in the real data@34#.

For Fig. 4~a! the slope was calculated as the maximu
drop from pixel to pixel. Another method, used in all oth
figures, is to take a finite difference in both horizontal dire
tions and to evaluate the absolute value of the gradient in
way. Using a stencil of five points in both direction, this
two orders more accurate than the previous method, but
necessarily more realistic, because the gradient is in this
not exactly aligned with the direction of the flow. Figure 4~b!
repeats Fig. 4~a!, with the alternative slope measureme
The observed slope-area relationships are weaker in
case, but still roughly equivalent for real and Gaussian s
faces. The discrepancy with Fig. 4~a! arises merely from the
ambiguity of measuring the slopes from the data@35#.

Real landscapes are more complex than Gaussian
faces. Erosion might alter landscapes in a way not captu
by Gaussian surfaces. Yet the direct comparisons of
slope-area relation in Fig. 4 shows a similarity betwe
them. The extent to which the geometric explanation of
slope-area relation applies to real landscapes can be fu
probed by looking at the convergence-slope a
convergence-area relation of the real landscapes. Figu
shows that the convergence-slope relation of Gaussian
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BASINS OF ATTRACTION ON RANDOM TOPOGRAPHY PHYSICAL REVIEW E63 026112
faces is reasonably true also for real landscapes. All of th
show a behavior close top2;1/u¹W hu4. Figure 5 shows the
convergence-area relation for real landscapes together
that for a synthetic landscape. Particularly small draina
areas are found for divergent points. The minimum drain
is the size of one cell, which is 900 m2. After a rapid initial
growth of the average convergence for smaller areas,
graph approaches its asymptotic behavior. Again, we see
real landscapes behave in this respect similarly to Gaus
surfaces. Hence, there is no doubt that the geometric e
found for Gaussian landscapes is also present in real l
scapes.

V. VARIATIONS IN THE SLOPE-AREA RELATION
ON GAUSSIAN SURFACES

The slope-area relation depends on the statistical par
eters of the surface, unlike Eq.~9!. Therefore, we obtain
pertinent statistics from numerical simulations. In the follo
ing, we discuss how the relation changes with the choice
the power spectrum. We explore various surfaces that v
over a wide range of length scales.

Figure 6 shows the slope-area relation for power la

FIG. 4. Slope-area relation for synthetic and real landsca
The solid line with filled dots in parts~a! and~b! is for a simulated
Gaussian surface at a resolution of 409634096. The length units
for the simulated landscape are chosen arbitrarily. The unfilled s
bols correspond to Juan Creek~L!, middle fork of the Noyo River
~s!, and north fork of the Noyo River~n!. These symbols are use
uniformly in all figures.~The graphs for the last two landscapes a
shifted downward by factors of 1.4 and 3, respectively, for be
visibility.! The two parts of the figure differ only in the way th
slope is determined. In both parts real and artificial landscapes
hibit similar slope-area graphs, suggesting the relation has a sim
geometric origin.
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with several different Hurst exponentsr, one exponential
power spectrum, and a landscape that is half filled with wa
~ignoring the lower half when taking the statistics!. For the
surfaces with short spatial correlation there is a clear a
dependence of the slope, while the surfaces that change m
slowly exhibit less of a dependence. For landscapes that
statistically self-similar, and hence characterized by th
Hurst exponentr, the slope-area relationship becomes mo
and more pronounced asr goes from 1 to zero.

Real landscapes are said to have Hurst exponents of a
0.7 @36#, although there are considerable variations amo

s.

-

r

x-
le

FIG. 5. Convergence-area relation for synthetic~filled symbols!
and real landscapes~empty symbols!. The two plots show the sam
data ^pua& on ~a! a semilogarithmic and~b! a log-log plot. The
length units for the simulated landscape are chosen arbitrarily.
dashed line in~b! corresponds top}a.

FIG. 6. Slope-area relation for Gaussian landscapes. The di
ent graphs correspond to landscapes with power-law spectra
different Hurst exponents, an exponential power spectrum, an
landscape half filled with an ‘‘ocean.’’ They are obtained at a re
lution of 102431024. The length units are chosen arbitrarily.
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NORBERT SCHORGHOFER AND DANIEL H. ROTHMAN PHYSICAL REVIEW E63 026112
individual landscapes~see@37# and references in@38#!. We
determined the structure functions of the real landsca
used in this study. They exhibit only a rather limited range
scaling, if at all, but they tend to be substantially flatter th
0.7. This corresponds to a lower Hurst exponent and thu
faster decorrelation. However, given the average tilting
the coastal basins and their small size, this might not
significant. In any case, in the range of Hurst exponent
,r,1 the simulated Gaussian surfaces show a clear sl
area dependence, as seen in Fig. 6. The graphs forr50.4
and 0.7 have a slope in the range of 0.15–0.25. Varying
power spectrum can lead to flatter or steeper slopes, bu
have never observed a slope-area graph steeper than
0.3.

Figure 5~b! shows that for large convergencep grows
more slowly than the areaa for the real and simulated land
scapes. The same is true for simulated landscapes with o
parameters~not shown in Fig. 5! and we have not found an
Gaussian landscape that would violate this trend. Sincp

<O(a) and p;1/u¹W hu2, it follows that u¹W hu>O(1/Aa).
Hence, one expects that the slope decays no faster than 1Aa.
As mentioned above, the actual restriction appears to be e
stronger, arounda20.3. This indicates the presence of
bound for the area dependence of the slope on a Gaus
landscape. The convergence depends strongly on the s
and the area depends strongly on the convergence, and t
fore the area strongly on the slope, or, equivalently, the sl
weakly on the area. Hence, it is difficult to get a particula
strong slope-area relation through geometrical effects alo

In the particular case of Fig. 4 the graphs for the r
landscapes change their slope at about 106 m2. This corre-
sponds geologically to a transition from colluvial~loose de-
bris! channels to bedrock channels@32#. The fact that the
simulations nowhere exhibit the final drop in the slope-a
relation to its full extent seen in real landscapes~Fig. 4!,
indicates that there are contributions to the slope-area r
tion beyond the geometrical effect we have unearthed in
paper. Exceptional cases of real landscapes are known
slope-area relations that are substantially more pronoun
than the ones we encounter on Gaussian surfaces@33,39#.
This leaves room for erosion, tectonics, or further mec
nisms contributing to the slope-area relation. However, si
a substantial slope-area relation is produced by Gaussian
faces with realistic Hurst exponents, the slope-area rela
carries less information about these processes than p
ously thought.

VI. DISCUSSION

In this work, we found and explained a correlation b
tween slope and drainage-basin area on random topogra
We gave a two-step argument. The first step was to de
analytically the convergence expression and to show exp
itly the dependence of convergence on slope. The sec
step connected the convergence with the area of drain
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This connection is intuitive, but we also demonstrated it n
merically. Further, we have left little doubt that the sam
effect appears in real landscapes too, by verifying the va
ity of both steps with real data.

We have also found that the slope-area correlation can
be strengthened indefinitely by varying the parameters.
slope-area relation is often approximated asu¹W hu;a2u.
Since we find for random surfaces 0<u<0.3, an exponent in
this range implies nothing about geological processes. I
instead only a consequence of water flowing downhill
random landscapes. This is in direct contrast to hypothe
that attribute any slope-area relation to erosional mechani
~see references in@3#!.

If erosional mechanisms were responsible for slope-a
relations one would expect a deterministic relation betwe
slope and area. A certain drainage area would always lea
the same slope at its outlet. Fluctuations would then be
to variations in geological parameters. On Gaussian surfa
on the other hand, there are intrinsic statistical fluctuatio
and the slope-area relation is a statistical correlation ra
than a deterministic formula. Investigations of qualitati
differences between slope-area fluctuations on real and
dom landscapes are therefore expected to yield additio
insight.

Although this study is motivated by geomorphology t
same statistical findings are applicable to other physical s
tems, where the motion is strictly along the gradient of t
force field and the inertia negligible. The slope-area relat
in this context states that for a quickly decorrelating for
field the domain of attraction will, on average, be larg
when the force is smaller.~Reference@24# reviews applica-
tions of Gaussian surfaces when the motion is along equ
tential lines, rather than perpendicular to them.!

The slope-are relation is but one consequence of the c
vergence expression~6!. Another consequence, as we ha
briefly discussed, is the formation of rivers preferably
locations of high convergence. The local optimum is w
respect to points on the same contour line, that is,p is maxi-
mum alongh5const, or in terms of our earlier notatio
dp/dt50 andd2p/dt2,0. This indicates a previously over
looked optimality principle for the organization of rivers
~Note that this extremal principle is not strictly valid fo
points at different heights. If it were, it would immediate
imply that the longitudinal stream profiles are concav!.
Whether such an observation may by of any use is uncl
What is clear, however, is that Gaussian or otherwise rand
topography has far-reaching nontrivial implications on ba
statistics.
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